首頁> 高等繼續(xù)教育大學(xué)生在線> 自考動(dòng)態(tài) > 正文

2019年下半年自考02198《線性代數(shù)》復(fù)習(xí)資料(三)分享!

對(duì)于大多數(shù)自考生來講,數(shù)學(xué)是一門難度較高的自考考試科目,為了幫助更多的自考生順利通過自考數(shù)學(xué)考試,我專門在下方整理匯總了2019年下半年自考02198《線性代數(shù)》復(fù)習(xí)資料(二),希望能夠?qū)ψ钥忌鷤冇幸欢ǖ膹?fù)習(xí)價(jià)值!

一、2019年下半年自考02198《線性代數(shù)》復(fù)習(xí)資料(三)分享

(一)重點(diǎn)

1、理解:向量、向量運(yùn)算以及向量的線性組合與線性表出,極大線性無關(guān)組的概念,線性相關(guān)與線性無關(guān)的概念,向量組的秩的概念,矩陣的秩的概念及性質(zhì),基礎(chǔ)解系的概念。

2、掌握:向量的運(yùn)算及運(yùn)算規(guī)律,矩陣秩的計(jì)算,齊次、非齊次線性方程組解的結(jié)構(gòu)。

3、運(yùn)用:線性相關(guān)、線性無關(guān)的判定,線性方程組解的判斷,齊次、非齊次線性方程組的解法。

(二)難點(diǎn)

線性相關(guān)、線性無關(guān)的判定。向量組的秩與矩陣的秩的關(guān)系。方程組與向量組線性表示及秩之間的聯(lián)系。

(三)重點(diǎn)難點(diǎn)解析

1、n維向量的概念與運(yùn)算

1)概念

2)運(yùn)算

若α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T

①加法:α+β=(a1+b1,a2+b2,…,an+bn)T

②數(shù)乘:kα=(ka1,ka2,…,kan)T

③內(nèi)積:(α。β)=a1b1+a2b2+,…,+anbn=αTβ=βTα

2、線性組合與線性表出

3、線性相關(guān)與線性無關(guān)

1)概念

2)線性相關(guān)與線性無關(guān)的充要條件

①線性相關(guān)

α1,α2,…,αs線性相關(guān)

<==>齊次方程組(α1,α2,…,αs)(x1,x2,…,xs)T=0有非零解

<==>向量組的秩r(α1,α2,…,αs)<s(向量的個(gè)數(shù))< p=””>

<==>存在某αi(i=1,2,…,s)可由其余s-1個(gè)向量線性表出

特別的:n個(gè)n維向量線性相關(guān)<==>│α1α2…αn│=0

n+1個(gè)n維向量一定線性相關(guān)

②線性無關(guān)

α1,α2,…,αs線性無關(guān)

<==>齊次方程組(α1,α2,…,αs)(x1,x2,…,xs)T=0只有零解

<==>向量組的秩r(α1,α2,…,αs)=s(向量的個(gè)數(shù))

<==>每一個(gè)向量αi(i=1,2,…,s)都不能用其余s-1個(gè)向量線性表出

③重要結(jié)論

A、階梯形向量組一定線性無關(guān)

B、若α1,α2,…,αs線性無關(guān),則它的任一個(gè)部分組αi1,αi2,…,αi t必線性無關(guān),它的任一延伸組必線性無關(guān)。

C、兩兩正交,非零的向量組必線性無關(guān)。

4、向量組的秩與矩陣的秩

1)極大線性無關(guān)組的概念

2)向量組的秩

3)矩陣的秩

①r(A)=r(AT)

②r(A+B)≤r(A)+r(B)

③r(kA)=r(A),k≠0

④r(AB)≤min(r(A),r(B))

⑤如A可逆,則r(AB)=r(B);如B可逆,則r(AB)=r(A)

⑥A是m×n陣,B是n×p陣,如AB=0,則r(A)+r(B)≤n

4)向量組的秩與矩陣的秩的關(guān)系

①r(A)=A的行秩(矩陣A的行向量組的秩)=A的列秩(矩陣A的列向量組的秩)

②經(jīng)初等變換矩陣、向量組的秩均不變

③若向量組(Ⅰ)可由(Ⅱ)線性表出,則r(Ⅰ)≤r(Ⅱ)。特別的,等價(jià)的向量組有相同的秩,但秩相同的向量組不一定等價(jià)。

5、基礎(chǔ)解系的概念及求法

1)概念

2)求法

對(duì)A作初等行變換化為階梯形矩陣,稱每個(gè)非零行中第一個(gè)非零系數(shù)所代表的未知數(shù)是主元(共有r(A)個(gè)主元),那么剩于的其他未知數(shù)就是自由變量(共有n-r(A)個(gè)),對(duì)自由變量按階梯形賦值后,再帶入求解就可得基礎(chǔ)解系。

6、齊次方程組有非零解的判定

1)設(shè)A是m×n矩陣,Ax=0有非零解的充要條件是r(A)<n,亦即a的列向量線性相關(guān)。< p=””>

2)若A為n階矩陣,Ax=0有非零解的充要條件是│A│=0

3)Ax=0有非零解的充分條件是m<n,即方程個(gè)數(shù)<未知數(shù)個(gè)數(shù)< p=””>

7、非齊次線性方程組有解的判定

1)設(shè)A是m×n矩陣,Ax=b有解的充要條件是系數(shù)矩陣A的秩等于增廣矩陣(A增)的秩,即r(A)=r(A增)

2)設(shè)A是m×n矩陣,方程組Ax=b

①有唯一解<==>r(A)=r(A增)=n

②有無窮多解<==>r(A)=r(A增)

③無解<==>r(A)+1=r(A增)

8、非齊次線性方程組解的結(jié)構(gòu)

如n元線性方程組Ax=b有解,設(shè),η2,…,ηt是相應(yīng)齊次方程組Ax=0的基礎(chǔ)解系,ξ是Ax=b的一個(gè)解,則k1η1+k2η2+…+ktηt+ξ是Ax=b的通解。

1)若ξ1,ξ2是Ax=b的解,則ξ1-ξ2是Ax=0的解

2)若ξ是Ax=b的解,η是Ax=0的解,則ξ+kη仍是Ax=b的解

3)若Ax=b有唯一解,則Ax=0只有零解;反之,當(dāng)Ax=0只有零解時(shí),Ax=b沒有無窮多解(可能無解,也可能只有唯一解)

(四)題型及解題思路

1、有關(guān)n維向量概念與性質(zhì)的命題

2、向量的加法與數(shù)乘運(yùn)算

3、線性相關(guān)與線性無關(guān)的憑證

1)定義法

設(shè)k1α1+k2α2+…+ksαs=0,然后對(duì)上式做恒等變形(要向已知條件靠攏!)

①由B=C可得AB=AC,因此,可按已知條件的信息對(duì)上式乘上某個(gè)A

②展開整理上式,直接用已知條件轉(zhuǎn)化為齊次線性方程組,最后通過分析論證k1,k2,…,ks的取值,得出所需結(jié)論。

2)用秩(等于向量個(gè)數(shù))

3)齊次方程組只有零解

4)反證法

4、求給定向量組的秩和極大線性無關(guān)組

多用初等變換法,將向量組化為矩陣,通過初等變換來求解。

5、求矩陣的秩

常用初等變換法。

6、求解齊次線性方程組與非齊次線性方程組

二、總結(jié)

以上就是我為大家分享的2019年自考數(shù)學(xué)復(fù)習(xí)資料,希望能夠?qū)φ跍?zhǔn)備報(bào)考2023年自考考試的考生們,有一定的幫助!如果您想?yún)⒓?023年自考考試,可以提前了解一下2023年自考報(bào)名條件!

1
意向表
2
學(xué)習(xí)中心老師電話溝通
3
查看評(píng)估報(bào)告
1、年齡階段

18~23周歲

24~32周歲

33~40周歲

其他

2、當(dāng)前學(xué)歷

高中及以下

中專

大專

其他

3、提升學(xué)歷目標(biāo)

工作就業(yè)

報(bào)考公務(wù)員

落戶/居住證

其他

4、意向?qū)W習(xí)方式

自學(xué)考試

成人高考

開放大學(xué)

報(bào)考所在地
*
*
*

111
授權(quán)院校
×
關(guān)閉
編輯推薦

1、凡標(biāo)注中國(guó)教育在線原創(chuàng)文章,轉(zhuǎn)載請(qǐng)注明出處中國(guó)教育在線及本文鏈接。

2、本文鏈接:http://fi-shw.com/ceici/e2-zikao-233042.shtml

3、如果你希望被中國(guó)教育在線報(bào)道,請(qǐng)發(fā)郵件到jijiao@eol.cn告訴我們。

免責(zé)聲明:

1、 凡本站注明“稿件來源:中國(guó)教育在線”的所有文字、圖片和音視頻稿件,版權(quán)均屬本網(wǎng)所有,任何媒體、網(wǎng)站或個(gè)人未經(jīng)本網(wǎng)協(xié)議授權(quán)不得轉(zhuǎn)載、鏈接、轉(zhuǎn)貼或以其他方式復(fù)制發(fā)表。已經(jīng)本站協(xié)議授權(quán)的媒體、網(wǎng)站,在下載使用時(shí)必須注明“稿件來源:中國(guó)教育在線”,違者本站將依法追究責(zé)任。

2、本站注明稿件來源為其他媒體的文/圖等稿件均為轉(zhuǎn)載稿,本站轉(zhuǎn)載出于非商業(yè)性的教育和科研之目的,并不意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性。如轉(zhuǎn)載稿涉及版權(quán)等問題,請(qǐng)作者在兩周內(nèi)速來電或來函聯(lián)系。

相關(guān)資訊

專題指導(dǎo)

`